Preliminary Design of an FFAG to 25 GeV for the IDS

J. Scott Berg Brookhaven National Laboratory Second IDS Plenary Meeting 11 June 2008

Nuon Collider

Linear Non-Scaling FFAG

- Larger number of passes through RF
- Arc accepts factor of 2 or more in energy
- Reasonable magnet aperture
- Accelerates using high-frequency RF
- Simple (FODO, doublet), identical cells
- Linear combined-function magnets
- Sufficient drift for RF cavity

- Accelerate from 12.6 GeV to 25 GeV
- 30 mm normalized transverse acceptance
- Two 201 MHz SCRF cells per lattice cell
 - □ Time variation with transverse amplitude
- Four empty drifts for injection/extraction
- Drift lengths: 2 m (FODO)/3 m (doublet)
- Optimize for cost including decays

Parameters

	FODO	Doublet	
Cells	62	61	
D radius (cm)	9.5	10.3	
D peak field (T)	7.6	8.4	
F radius (cm)	20.7	20.6	
F peak field (T)	3.4	3.1	
Circumference (m)	462 m	463 m	
RF Voltage (MV)	1526	1450	
Decay loss (%)	3.5	3.7	

Lattice Design Discussion

- FODO and doublet lattices very similar
 - □ Costs, size comparable
 - Both have somewhat over 8 turns
 - Doublet needs slightly less voltage
 - Doublet has higher field, larger D magnet
- Biggest difference: longer (3 m vs. 2 m) drift in doublet

- Septum followed by kicker in subsequent drift
- 2 cm separation between circulating beam and injected beam at septum
- Ideal tune septum to kicker: 0.25
- Horizontal injection
- Prefer septum just before defocusing magnet
 - Defocusing magnet pushes beam out
 - Beam smaller near defocusing magnet

Lattice Tune

Injection Parameters

	Doublet	Doublet	FODO	FODO
	D First	F First	First	Second
Kicker Field (T)	0.62	0.62	0.88	1.19
D Radius (cm)	11.0	16.1	9.2	9.9
F Radius (cm)	20.9	33.5	13.2	18.7

Injection: Commentary

- Kicker fields too high (0.5 T goal)
 - □ Better in doublet: longer drift
 - Use second kicker
- Magnet aperture needed close to design
 - Except when F near septum
 - Outside "good field region," but not for long
 - FODO slightly better than doublet

Injection Doublet Commentary

- F near septum requires too much aperture
 - Want to avoid special magnets
 - Symmetry breaking bad for FFAGs
- Doublet must either inject or extract wrong way
 - Could inject vertically, extract horizontally
 - Tunes near 0.25 for both these
 - Other sign is opposite direction!
 - Probably kills doublet

Injection Doublet, D Near Septum

Injection Doublet, F Near Septum

Lattice Tune

Injection FODO Commentary

- Injection and extraction with D near septum
- Kicker in first drift more effective
 - Horizontal tune high
 - Most phase advance in D
 - First drift about 0.25 away
- Kickers half of length for doublet

Injection FODO, Kicker in First Drift

Injection FODO, Kicker in Second Drift

Tasks

- Design simplistic at this point
 - Compute longitudinal parameters more carefully
 - Study performance under tracking
 - Study less expensive option (fewer cavities)
- Consider triplet design
 - FODO inefficient with fewer cavities
 - Doublet problems for injection/extraction
 - Vertical injection/extraction required

Tasks

- Injection
 - Study 2-kicker solutions
 - Study vertical options
- Consider extraction
- Study with beam loading
 - Develop scheme for handling bunch trains that arrive too rapidly, if necessary

